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Abstract: Several formsof chronicpaindonot respond to the
conventional analgesics, such as opioids, but can be treated
with antidepressants, such as serotonin and noradrenalin
reuptake inhibitors (SNRIs). Recent studies indicate that
noradrenalin signalling is a key target for SNRI-induced
analgesia in neuropathic pain. SNRIs inhibit chronic pain by
blocking reuptake of noradrenalin and subsequent activation
of adrenergic receptors on neurons in the dorsal horn of
the spinal cord. However, in the nervous system, various

subtypes of adrenergic receptors are highly expressed by
astrocytes and microglial cells. Activation of these receptors
on astrocytes engages complex intracellular signalling
pathways and prevents inflammatory changes of microglia,
which in turn can affect neuronal activity. Hence, SNRIs-
induced modulations of the glial cell physiology can impact
neural circuit functions and pain perception. In this review,
we summarize our current knowledge on the impact of SNRIs
on glial cells and inmodulating chronic pain in experimental
animal models.
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Zusammenfassung: Konventionelle Analgetika wie
Opioide helfen häufig nicht bei chronischen Schmerzen,
interessanterweise im Gegensatz zu Antidepressiva wie
Serotonin- und Noradrenalin-Wiederaufnahmehemmern
(SNRI). NeuereUntersuchungen zeigen nun, dass in der Tat
Noradrenalin-abhängige Signalwege bei SNRI-induzierter
Analgesie beteiligt sind. SNRIs induzieren erhöhte
Noradrenalin-Spiegel im Dorsalhorn des Rückenmarks.
Die folgende Aktivierung adrenerger Rezeptoren der Spi-
nalneurone führt zu einer deutlichen Reduktion der neu-
ropathischen Schmerzen. Im Nervensystemwerden jedoch
verschiedene Subtypen von adrenergen Rezeptoren in
hohem Maße von Astrozyten und Mikrogliazellen expri-
miert. Die Aktivierung dieser Rezeptoren auf Astrozyten setzt
komplexe intrazelluläre Signalwege in Gang und verhindert
entzündliche Veränderungen der Mikroglia, die ihrerseits die
neuronale Aktivität beeinflussen können. Daher können
SNRI-induzierte Modulationen der Gliazellphysiologie die
Funktionen neuronaler Schaltkreise und die Schmerz-
wahrnehmung beeinflussen. In dieser Übersicht fassen wir
unser aktuellesWissenüber dieAuswirkungenvonSNRIs auf
Gliazellen und die Modulation chronischer Schmerzen in
experimentellen Tiermodellen zusammen.

Schlüsselwörter: chronischer Schmerz; adrenerge Rezep-
toren; Astrozyten; Mikrogliazellen; Noradrenalin; Serotonin-
und Noradrenalin-Wiederaufnahmehemmer (SNRI).
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Introduction

Chronic pain is one of the most common global health
problems, which incurs high healthcare costs and loss of
productivity. In addition to impaired physical well-being,
chronic pain has been linked to numerous mental comor-
bidities such as anxiety and depression (Bair et al., 2003),
drug dependence (Salsitz, 2016), and reduced quality of life
(Bair et al., 2003; Dueñas et al., 2016). At present most of
the analgesic drugs used in the treatment of chronic pain
including opioids and antidepressants tend to exhibit
tolerance and side effects. Also, a consistent fraction of
patients does not respond to commonly used analgesic
drugs. For this reason, there is a global effort to find novel
targets to develop more effective analgesic drugs with
reduced or no side effects.

In general, analgesic drugs seem to mainly target
neuronal excitability and synaptic plasticity (Carroll et al.,
2007; Nakajima et al., 2012). However, very little is known
about the mode of action of most of the analgesics on glial
cells – a major class of cells in the nervous system. Several
recent studies have demonstrated that two types of glial
cells, i.e. astrocytes and microglia, play critical roles in
the pathogenesis of chronic pain and its long-term
maintenance (Ji et al., 2016). Indeed, activated glial cells
release neuroactive factors that can be pain-inducing or
pain-alleviating, which engage neurons in bidirectional
communication and lead to short- and long-term changes
in the neural circuit of pain. One strategy to relieve short-
term pain is to block glial cell activation in response to
injury, but a more promising strategy is to prompt glia to
release neuroactive molecules that can avert pain induc-
tion or even lead to analgesia.

Among antidepressants, SNRIs are most frequently
used to treat refractory forms of neuropathic pain
(Finnerup et al., 2005, 2015; Lee and Chen, 2010). SNRIs
increase the availability of two neuromodulators, seroto-
nin (5-hydroxytryptamine, 5-HT) and noradrenalin (NA),
which are known to modulate pain perception. 5-HT and
NA can exert a dual effect on pain hypersensitivity (Tavares
et al., 2021). 5-HT suppresses pain through the activation
of 5-HT1A/B and 5-HT7 receptors in the spinal cord
(Newman-Tancredi et al., 2018; Santello et al., 2017), while
the activation of 5-HT3 and 5-HT2A receptors facilitates
pain (Oyama et al., 1996). Although 5-HT can modulate
pain, NA is the primary neuromodulator responsible for
the analgesic effects of SNRIs. For NA, two mechanisms of
action have been suggested (1) activation of noradrenergic
descending pathways and (2) release of NA from sympa-
thetic fibers sprouting into dorsal root ganglia (DRGs)

(Kremer et al., 2016). Similar to 5-HT, while NA can reduce
hyperalgesia via activation of α2 and β2 adrenergic re-
ceptors (Yalcin et al., 2010), it can evoke hyperalgesia via
activation of α1 adrenergic receptor (Kohro et al., 2020).
Additionally, pain conditions can induce plastic changes
in specific cell-types, which can further contribute toward
the pain-relieving effect of antidepressants (Kimura et al.,
2013). The pain modulation by adrenergic pathways could
be further shaped by immune cells and cytokines. Indeed,
activation of α2a adrenergic receptors might contribute to
the long-term analgesia by preventing neuroinflammatory
changes such as reduced production of inflammatory
cytokines like tumor necrosis factor-α (TNF-α), interleukin-
1β (IL-1β) and prostaglandins (Liu and Eisenach, 2005).
Here, we want to highlight that even though we know
various sites of action of SNRIs, the precise mechanism of
their action on chronic pain remains elusive. It is tempting
to speculate that SNRIs engage distinct pathways involving
neurons and glial cells, and modulate several regions
across the brain, spinal cord and DRGs (Obata, 2017). Since
astrocytes and microglia express a wide variety of adren-
ergic receptors, these drugs could engage astrocytic and
microglial signaling mechanisms to influence neuronal
activity and synaptic plasticity. In this review, we will
highlight some of the known effects of SNRIs on glial cells
in pain modulation.

Astrocytes in pain

Astrocytes are one of the most abundant glial cells in the
CNS and account for 20–40% of all glial cells (Herculano-
Houzel, 2014). Astrocytes perform homeostatic functions,
such as maintenance of extracellular ion (K+) concentra-
tions and neurotransmitter levels (glutamate and GABA),
regulation of blood brain barrier, and provide energy
substrates (e.g., lactate) to neurons. Several studies sug-
gest that astrocyte activation can induce long-lasting
changes in the neural circuit of pain, and play a major
role in the amplification, maintenance and chronicity of
pain (Ji et al., 2013). Reactive astrocytes release a variety of
cytokines and chemokines, such as TNF-α and CCL2, which
can potentiate chronic pain by loss of GABAergic inhibition
and by strengthening pain memory traces, respectively
(Gosselin et al., 2010; Kronschläger et al., 2016; Tang et al.,
2021). Furthermore, astrocytes in chronic pain conditions
lose their homeostatic properties such as regulation of ion
and neurotransmitter levels and their receptor expression,
leading to neuronal hyperexcitability and subsequently
contribute to pain induction (Li et al., 2019). For example, it
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has been shown that in response to peripheral nerve injury
(PNI), the primary somatosensory (S1) cortex astrocytes
upregulate glutamate receptors such as mGluR5, which
mediates aberrant Ca2+ signaling and enhanced production
of the synaptogenic factor thrombospondin-1 (TSP1). TSP1
promotes maintenance of chronic pain by formation of
aberrant synapses that lead to the rewiring of neural cir-
cuits of pain (Kim et al., 2016a). Moreover, the optogenetic
activation of spinal cord (SC) astrocytes induced mechan-
ical allodynia and thermal hyperalgesia by disinhibiting
neurons in the spinal cord dorsal horn (SDH) (Nam et al.,
2016; Yamashita et al., 2014). At the same time, inhibiting
astrocytic activity can reduce neuropathic pain (Meller
et al., 1994).

Astrocytes and their interactions
with SNRIs

Astrocytes are known to express several sub-types of α and
β adrenergic receptors (Gaidin et al., 2020; Hertz et al.,
2010; Salm and McCarthy, 1992), and activation of these
receptors can modulate pain. A recent study identified a
subgroup of astrocyte that get activated in response to a
painful stimulus (intraplantar capsaicin injection). These
astrocytes are located in the superficial laminae of the
SDH and express transcription factor called Hes5. A direct
chemogenetic activation or an activation of α1a receptors
on Hes5+ astrocytes induced mechanical hyperalgesia
(Kohro et al., 2020). In a PNI model, the specific deletion of
α1a in Hes5+ astrocytes enhanced the analgesic action of
duloxetine, a drug often prescribed for peripheral diabetic
neuropathic pain (DPN) and fibromyalgia patients (Bravo
et al., 2019). This finding suggests α1a adrenergic receptors
on astrocytes can be a target for co-adjuvant drugs to
associate with duloxetine, in order to obtain the same
analgesic effect but with a lower doses and side effects
(Kohro et al., 2020).

A metabolic profiling study revealed that venlafaxine
affects amino acid metabolism, cellular growth, and
proliferation pathways in astrocytes (Sun et al., 2017). The
analgesic effect of venlafaxinewas induced by alteration in
the amino acid metabolism and decreased glutamate
levels, which in turn impaired glutamate-dependent
synaptic plasticity. In addition, venlafaxine inhibited the
production of pro-inflammatory cytokines IL-6 and IL-1β,
and reduced activation of two important molecular
pathways of pain development, STAT3 and JNK (He et al.,
2021). Another study showed that a NA and specific sero-
tonergic antidepressant (NaSSA) mirtazapine induce the
production of glial cell line-derived neurotrophic factor

(GDNF) in astrocytes (Hisaoka-Nakashima et al., 2019),
which reduce ectopic discharges within sensory neurons
and reversed sensory hypersensitivity developed in
neuropathic pain (Boucher et al., 2000).

In conclusion, astrocytes seem to play a key role in
pathogenesis of neuropathic pain and might be a target of
action of SNRIs (Figure 1 B, C). In future, detailed studies
are essential to unravel the mechanism of action of SNRIs
on astrocytes and to develop new molecules which further
enhance the efficacy of SNRIs in pain treatment.

Microglia in pain

In the CNS, microglia are the resident immune cells and
continuously survey the neuropil to clear up cellular debris
and infectious agents (Hanisch and Kettenmann, 2007).
Microglia have been shown to be active players in the
pathogenesis of chronic pain (Ji and Suter, 2007). Pain
differs from other neurological diseases for its rapid onset:
following treatment with microglial activators and in-
hibitors, pain behavior will change within minutes to tens
of minutes (Berta et al., 2014; Tsuda et al., 2003). Recent
studies indicate that neuromodulators released by micro-
glia can rapidly alter synaptic plasticity, a driving force for
the pathogenesis of pain after tissue and nerve injury (Luo
et al., 2014; Woolf and Salter, 2000).

After PNI, SDH microglia are strongly activated (Guan
et al., 2016; Tsuda et al., 2005). This activation requires
neuronal activity (Wen et al., 2007; Xie et al., 2009) and the
release of sensory neuron-derived pro-inflammatory fac-
tors, including colony-stimulating factor 1 (CSF1), caspase-
6, neuregulin-1, cytokines such as IL-1β, CCL2, CXCL1,
CCL21, extracellular proteases and ATP (reviewed in Inoue
and Tsuda, 2018). All these molecules have been shown to
efficiently activate distinct receptors on microglia and
concomitantly enhance the expression of receptors for
these factors, such as P2X4, P2Y12, and CX3CR1. The acti-
vatedmicroglia further increase production of TNF-α, IL-1β
and brain-derived neurotrophic factor (BDNF), which in
turn fine-tunes excitatory and inhibitory synapses, and
ultimately enhance pain signal transmission to the brain.
For example, TNF-α and IL-1β enhance excitatory and
suppress inhibitory synaptic transmission, while BDNF
disinhibits GABA-mediated inhibition in the SC (Guan
et al., 2016; Kawasaki et al., 2008). Since microglial cells
are engaged in neuroinflammation after nerve injury and
influence synaptic connectivity and neurotransmission,
they are critical for the induction of hyperalgesia and
allodynia in chronic pain conditions (Figure 1 B, C).
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Microglia and their interactions
with SNRIs

In particular, microglial cells express α2 and β2 adrenergic
receptors, which arewell known for their role in neuropathic

pain (Kremer et al., 2016). Activation of these receptors was

shown to attenuate microglial reactivity through reduced

activation p38 MAPK pathway (Morioka et al., 2009; Zhang
et al., 2016b) and can ameliorate neuropathic mechanical
hypersensitivity (Choucair-Jaafar et al., 2009). In models of
neuropathic pain, such as DNP or vincristine-induced
neuropathic pain, duloxetine treatment reduced microglial
activation (Tawfik et al., 2018). Moreover, duloxetine
downregulated TNF-α and NGF levels in a rat model of
intervertebral disk (IVD) degeneration (Handa et al., 2016).

Figure 1: Action of SNRIs in peripheral and central nervous system glial cells and their involvement in chronic pain.
(A) SNRIs induce analgesia by acting in areas from the central and peripheral nervous system. (B) In the brain, the increase in noradrenalin
concentration in the synaptic cleft induced by SNRIs can activate α1 and α2 receptors in astrocytes (green), and β2 receptors in
microglia (blue). The activation of α1 adrenergic signaling in somatosensory cortex astrocytes triggers rapid astrocytic Ca2+ elevation (Agarwal
et al., 2017), while activation of α2 receptors leads to a simultaneous increase in intracellular Ca2+ and reduced cAMP levels, but their
consequences to the analgesic effect of SNRI is least understood. β2 receptors activation in microglia elevates intracellular levels of cAMP,
which in turn can modulate neuroinflammation and impair cortical experience-dependent plasticity. The potential anti-inflammatory effect of
β2 receptor activation in cortical microglia for the analgesic effect of SNRIs remains unexplored. (C) The action of noradrenalin in the spinal
cord neural circuit seems to be a key mechanism responsible for the analgesic effect of SNRIs. Noradrenalin inhibits projections and
interneurons (yellow) in the dorsal horn through activation of α2 adrenergic receptors. However, adrenergic receptors in both microglia
(blue) and astrocytes (green) in the spinal cord can influence the analgesic effect of SNRIs. Activation of the α1 receptor in astrocytes of the
dorsal horn induces pain, but consequences of α2 activation remains unexplored. α2 and β2 adrenergic receptors activation in spinal
microglia reduces the activation p38/NF-κB pathway and the release of pro-inflammatory and neuroregulatory mediators during neuropathic
pain. (D) The analgesic effect of SNRIs in the peripheral nervous system occurs by the activation of the β2 receptor in SGCs (green). This
activation suppresses the release of ATP and TNF-α, and reduces microglia-like cells/macrophages (blue) activation in DRGs. ATP can induce
mechanical sensitization by acting in P2X3 directly in nociceptors (yellow) or inducing the expression of TNF by acting in P2X7 receptors in
SGSc. Given that TNF disrupts gap junctions, the SNRIs may play an indirect effect on connexins, such as connexin-4. Ca2+ = calcium ions;
cAMP = cyclic adenosine monophosphate; ATP = adenosine triphosphate; CSF1 = colony-stimulating factor 1; IL-1β = interleukin 1 beta; TNF-
α = tumor necrosis factor alpha; cGMP = cyclic guanosine monophosphate; Cx43 = connexin 43.
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Interestingly, intrathecal injection of Poly Lactic-co-Glycolic
Acid (PLGA) nanoparticles containing a low dose of dulox-
etine was able to attenuate the p38/NF-κB pathway and the
production of inflammatory cytokines in the rat spinal nerve
ligation (SNL) model (Kim et al., 2021). Several studies
highlighted an inhibitory effect of duloxetine on microglia
P2X4R (Nagata et al., 2009; Yamashita et al., 2016), and
the consequent analgesic effects persisted even after 5-HT
and/or NA signals were inhibited by 5-HT depletion or a
NA neurotoxin in a PNI induced pain hypersensitivity
(Yamashita et al., 2016). Duloxetine results in a general in-
hibition of microglia in the spinal cord that associates with
the reduction of pain hyperalgesia. In astroglia–microglia
co-culture, venlafaxine prevented microglial activation,
reduced pro-inflammatory cytokine secretion (IL-6 and INF-
γ), and increased TGF-β release (Vollmar et al., 2008).

A potent SNRI ammoxetine was found to have anal-
gesic effect on neuropathic pain, fibromyalgia-related pain
or inflammatory pain models (Zhang et al., 2016, 2018). In
a rat DNP model, which shows increased activation of
microglia but not astrocytes in the SC, four weeks of
ammoxetine treatment significantly reduced mechanical
allodynia and improved depressive-like behavior. Similar
to other SNRIs, ammoxetine reduces microglial activation,
accumulation of pro-inflammatory cytokines and activa-
tion of p38 and c-Jun N-terminal kinase (JNK) in the SC
(Zhang et al., 2018).

Taken together, a general mode of action of SNRIs
on microglial cells is to prevent their activation and
subsequent production of inflammatory cytokines, which
contributes to the overall analgesic efficacy of these class of
drugs (Table 1). Understanding the impact of microglia in
analgesic efficacy of SNRIs can promote the development
of new specific drugs that have little to no severe compli-
cations or better fit for other neuropathic conditions.

Peripheral glia in pain

For a holistic targeting of chronic pain, it is of utmost
importance to not only to comprehend the changes in the
SC and brain, but also the cellular and molecular changes
in the DRGs (Berger et al., 2021; Berta et al., 2017; Esposito
et al., 2019; Liem et al., 2016). DRGs are the part of the
peripheral nervous system (PNS) recognized as targets for
(neuro)-modulation to combat chronic pain (Berta et al.,
2017). In the DRG, two types of glia namely satellite glial
cells (SGCs) and macrophages as microglia-like cells
(MLCs) are central to pain cascades (Ahimsadasan et al.,
2022; Murray et al., 2021). SGCs closely attach to neurons
and share many properties with astrocytes of the CNS
(Hanani, 2005), including recycling the excess of extracel-
lular glutamate (Carozzi et al., 2008), potassium buffering
(Tang et al., 2010) and gap junctions (connexin 43) coupling
(Spray and Hanani, 2019). SGCs become gap-junction
coupled to neurons in response to neuronal injury (Kim
et al., 2016b; Spray and Hanani, 2019). The macrophages in
the DRGs are equivalent to the microglia of the CNS (Mori
et al., 2003) and perform the task of an immune system, and
get activated during acute and chronic pain (Yu et al., 2020).

When considering the sensory processing along the
DRGs, Schwann cells are important cellular partners. They
are themyelinating cells of the PNS and are in close contact
with the neurons and immune cells. Upon peripheral in-
juries, Schwann cells are involved in the enhanced release
of chemokines/cytokines (MCP-1, TNFα, etc.), recruitment
of macrophages, gene expression changes in the sensory
neurons (Martini et al., 2008; Ohtori et al., 2004; Poplawski
et al., 2018; Wagner and Myers, 1996).

Interestingly, direct stimulation of DRG neurons re-
leases ATP, activates surrounding SGCs via P2X7 receptors
and leads to an increased TNF-α release from SGCs. This

Table : Clinically used antidepressants and their targets in CNS and PNS glial cells.

SNRI Target Cell type CNS/PNS
region

References

Duloxetine GFAP, connexin ,
p/NF-κB TNF-α, Iba

Astrocytes, microglia
SGCs,

SC, DRG Tawfik et al. (), Jeanson et al. (), Okada et al.
(), Sun et al. (), Handa et al. (), and
Kim et al. ()

Ammoxetine p-p, p-JNK Microglia SC Zhang et al. ()
Venlafaxine SB, β-AR, iba Astrocytes, SGCs,

microglia
PNS (DRG) Zychowska et al. () and Bohren et al. ()
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communication between neurons and glial cells could be
disrupted by blocking L-type calcium channel (Zhang
et al., 2007). Furthermore, the activation of P2X7 receptors
in SGCs reduced pain by downregulating P2X3 receptors in
nociceptive neurons (Chen et al., 2008).

DRG glial cells and their
interactions with SNRIs

Still, there is a no clear description of the exact mecha-
nisms of action of SNRIs on the glial cells of the DRGs.
Recent studies showed the involvement of various che-
mokines and cytokines in the induction and chronification
of pain (Gosselin et al., 2010; Tang et al., 2010). Several
SNRIs such as venlafaxine, duloxetine, and terbutaline
have been shown to decreased TNF-α level in SGCs and
attenuated neuropathic allodynia through a mechanism
dependent on β2-AR (Bohren et al., 2013; Handa et al.,
2016), which is exclusively expressed on SGCs, and not on
neurons (Shen et al., 2022). In addition, venlafaxine was
able to induce analgesic effects and weaker allodynia
by reducing microglia activation as detected by Iba1-
immunolabeling in the DRG (Zychowska et al., 2015).

Although the mode of action of SNRIs in DRGs is
unclear, they may attenuate sensitivity to pain by reducing
the recruitment of immune cells to the DRGs through
inhibition of ATP and TNF-α release, which leads to
decreased interaction between SGCs and DRG neurons
(Figure 1D). However, an extended analysis of the signaling
pathways affected by SNRIs in DRGs is needed to capture
the full extent of action of these drugs across the nervous
system.

Perspective

It is evident that we know very little about the role of glial
cells across the nervous system in the pain modulation. In
the context of the pain pathophysiology, glial cells have
been mostly studied in the context of neuroinflammation
with a limited number of cellular markers and the handful
of chemokines and cytokines. Another caveat has been
that most of the studies outlining the role of glia cells
in pain have been performed in the cell culture system,
which many times couldn’t be directly interpolated
in vivo. With emerging imaging technologies, cell-type
specific expression of genetically encoded ion sensors,
optogenetics and chemogenetics tools, mouse transgenic
tools, and high-throughput single cell RNA-sequencing,
metabolomics and proteomics, will enable glial-biologists

and pain researchers to work closely to dissect the role of
astrocytes and microglial cells in pain modulations and
chronification in the PNS and CNS.

The increased understanding of the role glial cells in
chronic pain will not only help us tackle already knowpain
conditions, but also to develop an efficient treatment
strategy for the newly arising conditions. For examples,
COVID-19 often causes peripheral or central neuro-
inflammation, it is anticipated that several chronic pain
complications of COVID-19 will be neuropathic (Drożdżal
et al., 2020). Although antidepressants such as SNRIs are
effective in the treatment of a small class of neuropathic
pain conditions, it might be worth repurposing SNRIs to
treat COVID-19 related neuropathic pain. In the long-term,
the key aim is to gain a precise understanding of the
analgesic mechanisms of antidepressants, and to identify
distinct cellular targets of these drugs. These developments
will enable to further develop specific drugs or therapies to
treat neuropathic pain without undesirable cognitive side
effects of SNRIs.
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